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Combined Differential and Common-Mode

Scattering Parameters: Theory and Simulation
David E. Bockelman, Member, IEEE, and William R. Eisenstadt, Senior Member, IEEE

Abstract-A theory for combined differential and common-
mode normalized power waves is developed in terms of even and

odd mode impedances and propagation constants for a microwave
coupled line system. These are related to even and odd-mode
terminal currents and voltages. Generfllzed s-parameters of a
two-port are developed for waves propagating in several cou-
pled modes. The two-port s-parameters form a 4-by-4 matrix

containing deferential-mode, common-mode, and cross-mode s-

parameters. A speciat case of the theory allows the use of

uncoupled transmission lines to measure the coupled-mode waves.

Simulations verify the concept of these mixed-mode s-parameters,
and demonstrate conversion from mode to mode for asymmetric
microwave structures.

I. INTRODUCTION

T HERE is an emerging need to measure RF and microwave

differential circuits. Differential circuits have been impor-

tant in communications systems for more than 50 years. Recent

technological advances have pushed analog differential circuit

performance limits into RF and low microwave frequencies.

Typically, differential circuits are designed and analyzed

with traditional analog techniques, which employ lumped

element assumptions. Examples of such analog differential

circuit design and analysis are found in the texts by Gray

and Meyer [1] and Middlebrook [2]. RF and microwave

differential circuits contain distributed circuit elements, and

require distributed circuit analysis and testing. Furthermore,

traditional methods of testing differential circuits have required

the application and measurement of voltages and currents,

which is difficult at RF and microwave frequencies. Scattering

parameters (s-parameters) have been developed for charac-

terization and analysis at these frequencies [3], but have

been applied primarily to single-ended circuits. A modifica-

tion of existing s-parameter techniques is needed to measure

differential-mode and common-mode circuit performance at

microwave frequencies.

Currently, it is possible to measure common-mode s-

parameters on wafer with standard ground-signal-ground

probes to more than 100 GHz [4]. However, a differential

circuit requires a balanced probe to launch differential signals.

A balanced probe provided by Cascade Microtech [5] allows

some characterization of differential signals with addition of
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180 degree splitter/combiners. However, these probes attenu-

ate the common-mode signal, so that it is neglected, although

typically non-zero. Testing with separate differential probes

and common-mode probes will allow for more complete s-

parameter characterization of differential circuits, but until this

work, there has been little examination of this subject.

A severe limitation in differential-mode/common-mode cir-

cuit characterization is a lack of applicable power wave and

s-parameter theory. There is no reported way (known to the

authors) to describe s-parameters based on mixed differential-

mode/common-mode propagation. Previous work most closely

related to this work has been specific to descriptions of coupled

transmission lines [6]–[ 14] and shielded balanced transmission

lines. Work by the National Bureau of Standards on balanced

transmission lines uses s-parameters to describe differential-

mode propagation, but neglects common-mode propagation

and any mode conversions [15]. In the literature, the cou-

pled transmission work has been most commonly applied

to directional couplers [16]–[19] with Cohn and Levy [20]

providing a historical perspective on the role of coupled

transmission lines in directional coupler development. Past

work on coupled transmission lines has largely focused on

voltage/curTent relationships and Z, Y, and ABCD-parameter

descriptions of TEM circuits. One notable exception to the

Z/Y/ABCD-parameter approach is work by Krage and Haddad

[21] which employs traditional normalized power waves to

describe coupler behavior. However, all of the referenced work

deals with specific TEM structures, and is not suitable for

characterization of a generic differential circuit. The present

paper provides the theory behind the mixed propagation mode

based s-parameters suitable for general microwave differen-

tial circuit characterization, and demonstrates its utility with

simulations on Hewlett-Packard’s Microwave Design System

(MDS) [22].

This paper is organized as follows: In Section II the Mixed-

mode two-port circuit is presented, and the definition of

the coupled line transmission system is given. Mixed-mode

power waves and mixed-mode s-parameters are developed

in Section III. Section IV discusses special considerations

necessary for mixed-mode measurement systems. Section V

presents the ideal mixed-mode two-port measurement system

and simulations using MDS. Finally, conclusions are presented

in the last Section VI.

II. MIXED-MODE TWO-PORT CIRCUIT

The concept of a microwave differential circuit is examined

in this section. In a practical RF/microwave implementation,
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Fig. 1. Schematic of differential s-parameter measurement.

such a differential circuit is based on pairs of coupled transmis-

sion lines. A schematic of a typical two-port RF/microwave

differential system is shown in Fig. 1. Essential features of

the microwave differential circuit in Fig. 1 are the coupled pair

transmission line input and output. It is conceptually beneficial

to define a signal that propagates between the lines of the

coupled-pair (as opposed to propagating between one line

and ground). Such signals are known as differential signals,

and can be described by a difference of voltage (AV1 #

O, AVZ # O) and current flow between the individual lines

in a pair. By such a definition, the signal is not referenced

to a ground potential, but rather the signal on one line of the

coupled pair is referenced to the other. Further, this differential

signal should propagate in a TEM, or quasi-TEM, fashion

with a well-defined characteristic impedance and propagation

constant. Coupled line pairs, as in Fig. 1, allow propagating

differential signals (the quantities of interest) to exist. The

differential circuit discussion in this paper will be limited to

the two-port case, but the generalized theory for n-port circuits

can be readily derived from this work.

Most practical implementations of Fig. 1 will incorporate a

ground plane, or some other global reference conductor, either

intentionally or unintentionally. This ground plane allows

another mode of propagation to exist, namely common-mode

propagation. Conceptually, the common-mode wave applies

equal signals with respect to ground at each of the individual

lines in a coupled pair, such that the differential voltage

is zero (i.e. AV1 = AV2 = O). The ability of the mi-

crowave differential circuit to propagate both common-mode

and differential-mode signals requires any complete theoretical

treatment to include characterization of all simultaneously

propagating modes. For convenience, the simultaneous prop-

agation of two or more modes (namely, differential-mode,

and common-mode) on a coupled transmission line will be

referred to in this paper as mixed-mode propagation, from

which mixed-mode s-parameters will be defined.

III. MmED-MODE POWER WAVES AND S-PARAMETERS

To begin the presentation of mixed-mode s-parameters,

a general asymmetric coupled transmission line pair over a

ground plane will be analyzed. This analysis yields multiple

propagating modes all referenced to ground. These modes

will be used to express the desired differential signal between

the lines of the coupled-pair, as well as the common signal

x.L
Port 2

Fig. 2. Schematic of asymmetric conpled-pair transmission lines.

referenced to ground. Fig. 2 is a diagram of such a coupled-

pair transmission line, with all pertinent voltages and currents

denoted. Also shown in Fig. 2 is a representation of a ter-

mination for the coupled-pair line. Later, this paper will use

these lines as reference lines at the input and output of an

arbitrary DUT. Subject to the simplifying assumptions, the

mathematical results of this paper are applicable to any pir

of conductors with a nearby ground conductor.

Referring again to Fig. 2, the behavior of the coupled-line

pair can be described by [6]

dul
——

dx
= Zlil + Zmiz

dvz

dx
— = Zziz + Zmil

dil
——

dx
= ‘UIU + %rl~2

di2

dx
— = gzvz + ymvl (1)

where Z1 and .Z2 are self-impedances per unit length, Y1 and

yz are admittances per unit length, and .z~ and y~ are mutual

impedance and admittance per unit length, respectively. Also,

a harmonic time dependence (i.e. e@) is assumed.

The solution to the set of (1) as published by Tripathi [6]

is given as

VI = Ale–y” + A2e7Cz + A3e–7n’ + A4e7T’

V2 = AIRCe ‘~c’ + A2RCe7c” + A3Rme–7T’ + A4Rne7n’

where Al, ~d A3 represent the phasor coefficients for the

forward (positive x) propagating c and n-modes, respectively,
and AZ, and A4 represent the phasor coefficients fOr the

reverse (negative x) propagating c and ~-modes, respectively.

The characteristic impedance of the c-modes are represented

by Z.l and ZC2 for lines A and B, respectively, and the

characteristic impedance of the n-modes are represented by

Znl and Znz for lines A and B, respectively. Additio~ally,

R. = V2/VI for Y = +7., R. = VZ/V1 for v = *%, and

yl’zl + y2z?
72,. = ‘2 + Yrn’Gn + ;[(YIZ1 – Y2~2)2

+ 4(.zlyrn + Y2.%)(z2Ym + YIGrl)ll’2. (3)
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Each voltage/current pair at each node represent a single

propagating signal referenced to the ground potential. These

signals will be called nodal waves.

A practical simplification in the development of mixed-

mode s-parameter theory is to assume symmetric coupled pairs

(i.e., lines A and B have equal width) as reference trans-

mission lines. This assumption allows simple mathematical

formulations of mixed-mode s-parameters. Furthermore, this

assumption is not overly limiting, since reference lines may

be made arbitrarily short. For symmetrical lines, in (2) RC =

1 and R. = – 1, and the c and the T-modes become the

even and odd modes, respectively, as first used by Cohn [13].

For notational purposes, we shall use the substitutions c ~ e

and m ~ o for even-mode and odd-mode, respectively. With

these substitutions, the mode characteristic impedances and

propagation constants become

Zcl = ZC2 = z.

zm~ = Z*2 = Z.

‘)’. ‘7’. 7.’70. (4)

Expressing (2) in the symmetric case

VI = A1e–~ez + A2e~ez + A3e~0z + A4e~0’

V2 =A1e–7ez + A2e~’z – A3e–~0’ – A4eY. Z

Al _7ez AZ A3 A4
il = —e — _e7. z + —e–~.~ _ _e70z

z, z. Z. z.
Al _ ~ez _ ~ey~z A3 _ A4

iz = —e
z.

_e 70~ + _e-Yoz.
z. – z. z.

(5)

As before, these voltage/current pairs are nodal waves at each

terminal that are referenced to ground.

It is important, now, to define the differential and common-

mode voltages and currents to develop a self-consistent set

of mixed-mode s-parameters. Define the differential-mode

voltage at a point, ~, to be the difference of between voltages

on node 1 and node 2

vd~(~) ~ VI — V2. (6)

This standard definition establishes a signal that is no longer

referenced to ground. In a differential circuit, one would expect

equal current magnitudes to enter the positive input terminal as

leaves the negative input terminal. Therefore, the differential-

mode current is defined as one-half the difference between

currents entering nodes 1 and 2

id~($) - ~(il – iz). (7).

Definitions in (6) and (7) are self-consistent with the differ-

ential power delivered to a differential load. These definitions

differ from previously published definitions by Zysman and

Johnson [10] due to change in references. The common-mode

voltage in a differential circuit is typically the average voltage

at a port. Hence, common-mode voltage is one half the sum

of the voltages on nodes 1 and 2

?&-m($) = ;(V1 + V2). (8)

The common-mode current at a port is simply the total current

flowing into the port. Thereforej define the common-mode

current as the sum of the currents entering nodes 1 and 2

Zcm(z) = il + iz. (9)

Note: The return current for the common-mode signal flows

through the ground plane. Again, these definitions differ from

definitions from Zysman and Johnson [10] due to change in

references.

Expressing these differential and common-mode values (6)

through (9) in terms of the line voltages and currents (5)

?)dm(~) = 2( A3e–70z + A4e~oz)

(Al _ AZ
icm(z) =2 ye 7’Z — )~e7’X . (lo)

\ be he /

Recall that Al and AZ are the forward and reverse phasor

coefficient for the even-mode propagation, and A3 and A4 are

the forward and reverse phasor coefficient for the odd-mode

propagation. If a short hand notation is introduced, a better

understanding of these definitions can be had. Let

v~os(z) ~ A3e–~Oz vfig(~) ~ A4e~0z

v~(z) R Ale-”” v~g(z) ~ A2eY.Z

A3 -Toz
i~”s(z) = ~e iflg(r) ~ ~e’”’

Al _-/ez
i~os(z) - ~ e iflg(z) ~ $e”z.

e

Then (5) becomes

VI = v:”’(%) + ?$g(z) + Vfos(z) + Vyg(z)

V2 = 7J:”’(%) + Vyg(z) – v:”’(z) – ‘2p(z)

il = z:”’(z) – p(z) + iy(z) – iyg(z)

~z = ~Fy(z) – &3 (%) - i:”’(m) + i~g(z)

and (10) becomes

vd~(~) = 2(v~0s(%) + ‘&g(z))

(11)

(12)

idm(~) = i:os(~) – i~g(~) =
v:”’(z) – ‘&-g(z)

z.
Vcm(z) = v:”’(z) + ‘&’($)

VPOS(Z) – vyg(~) , (13)
i.m(r) = 2(i:”’(z) – igeg(z)) = 2 e z

e

Note that, in general, ZO # 2..

Characteristic impedances of each mode can be defined

as the ratio of the voltage to current of the appropriate

modes at any point, x, along the line. These impedances can

be expressed in terms of the even and odd-mode (ground

referenced) characteristic impedances

%:(x) 2V:”’(X)

“m= ~~(z) = &’(3)/zo = 2Z”
(14)

VPos (z) _
z.. = +

V: O’(Z) z.

‘dm ($) - (2d’Os(~))/ze = ~“
(15)
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These relations between the even/odd mode characteristic

impedances and the differential/common mode characteristic

impedances are consistent with the matched load terminations

discussed in the literature [7], [8].

Now that voltages, currents, and characteristic impedances

have been defined for both differential and common modes, the

normalized power waves can be developed. By the definition

for a generalized power wave at the nth port [23], [24]

1
a— [Vn + Znzn]

n – 2~iqZJ

bm= 1 [Wn - Znz:]
2@7zJ

(16)

where an is the normalized wave propagating in the forward

(positive z) direction, bn is the normalized wave propagating

in the reverse (negative z) direction, and Zn is the charac-

teristic impedance of the port. With the above definitions, the

differential normalized waves become, at port 1

a,ml = C&(o) =

b~ml = balm(o) =

(17)

Similarly, define the common-mode normalized waves, at port

1, as

a .ml = aCm(0) = 1 [vCm(T) + icm(z)zcm][z=tj
2/Gpq

bcm, E bCm(0) = 1 [%11(~) - &(x).G] Iz=o.
2@@zJ

(18)

Analogous definitions at port 2 can easily be found by setting

X=l.

Imposing the condition of low-loss transmission lines on

the coupled-pair of Fig. 2, the characteristic impedances are

approximately purely real [24]. Under this restriction, Zdm =

Re{,Zd~} - Rd~ and ZC~ % Re{ZC~} E RC~. With this

assumption, the normalized wave equations at port 1 can be

simplified

adml = & [’?&(x)+ idm(~)~dm]I..(I

bdml = j_j&&dm(x) - ~dm(x)~dm]lz==O (19)

a,-ml = + [Uml(~) + &n(~)&nl 1.=0

,-ml – * [Wcm(z) - icm(x)llcm]jz=o.b– (20)

With the normalized power waves defined, the development

of mixed-mode s-parameters is straight forward. The definition

of generalized s-parameters [23], [24] is

[b] = [S][a] (21)

differe:-el-mode
P#Jylat Physical

A Port 2

common-mode
ports

Fig. 3. Conceptual diagram of mixed-mode two-port.

where the bold letters denote an n-dimensional column vector

or an n-by-n matrix. Given a coupled-line two-port like Fig. 2,

or any arbitrary mixed-mode two-port, the generalized mixed-

mode s-parameters can be given as

~dml = Slladml + S12Udm, + s13acm1 + s14acm2

balm, = S21Udml + s22adrn2 + s23%m1 + $24%m,

bcml = S31adml + S32adm2 + 333acml + s34ucm2

bcmz = s41adml + s42adm2 + s43acml + s44aCm, (22)

where the subscripts 1 and 2 denote ports 1 and 2, respectively.

Here, [S] can be described by

The following names are used: Call [Sdd] the differential s-

parameters, [S,.] the common-mode s-parameters, and [f;dC]

and [SCd] the mode-conversion or cross-mode s-parameters.

In particular, [Sd.] describes the conversion of common-mode

waves into differential-mode waves, and [Sc~] describes the

conversion of differentid-mode waves into common-mode

waves. These four partitions are analogues to four transfer

gains (A,., Add, Acd, Ad.) introduced by Middlebrook [2].
These mixed-mode two-port s-parameters can be shown

graphically (see Fig. 3) as a traditional four-port. It must be

remembered, however, that the ports are conceptual tools only,

and not physically separate ports.

IV. CONSIDERATIONS FOR A PRACTICAL

MIXED-MODE MEASUREMENT SYSTEM

The most straightforward means of implementing a mixed-

mode s-parameter measurement system is to directly ap-

ply differential and common-mode waves whale measuring

the resulting differential and common-mode waves. Unfor-
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tunately, the generation and measurement of these modes

of propagation is not easily achievable with standard vector

network analyzers (VNA). However, under certain condi-

tions, one can relate the total nodal waves (each representing

two modes of propagation) to the desired differential and

common-mode waves. These nodal waves are readily gen-

erated and measured with standard VNAS, and with con-

sideration, the differential and common-mode waves, and

hence the mixed-mode s-parameters, can be calculated. There-

fore, the relationships between the normalized mixed-mode

waves (ad~l, bd~l, aC~l, &.~l, etc.) and the nodal waves

(al, bl, az, bz, etc.) will be derived, and the necessary con-

ditions for these relationships to exist will be found.

If one is to make a general purpose RF measurement port,

the values of characteristic port impedances must be chosen.

It is useful to require the even and odd-mode characteristic

impedances of the measurement system to be equal, thus

reducing the number of different valued matched terminations

required. In contrast, it is difficult to fabricate lumped termi-

nation standards for coupled lines where Z. does not equal

ZO. If the characteristic impedances of the lines are defined

to be equal (say, 50 Q), then a further simplification of the

above expressions can be accomplished with the substitution

Z, = Z. = ZO where in the low-loss case ZO = Re{ZO} -

R..

By choosing equal even and odd-mode characteristic imped-

ances, one is selecting a special case of coupled transmission

line behavior, as described in (l). Enforcing equal even

and odd-mode characteristic impedances is equivalent to the

conditions of uncoupled transmission lines. As has been shown

in the literature [7], the condition Z, = ZO results in the

mutual impedances and admittances being zero (.zm = O,

y,n = O). Under these conditions, the describing differential
equations of the transmission line system (1) clearly become

uncoupled, resulting in two independent transmission line

solutions. Although very specific, this is a valid solution to (1),

and all results up to this point are also valid under the special

case of equal even and odd-mode characteristic impedances.

Therefore, we choose the reference lines of the mixed-mode

s-parameters to be uncoupled transmission lines. The key to

this choice is that these uncoupled reference lines can be

easily interfaced with a coupled line system, as discussed

below.

To interpret the meaning of uncoupled reference trans-

mission lines, consider a system of transmission lines: one

coupled pair, and one uncoupled pair connected in series
with the coupled pair. If even and odd (or c and n) modes

are both propagating (forward and reverse) on the coupled

pair. then it can be shown that the waves propagating on

each of the uncoupled transmission lines are linear com-

binations of the waves propagating on the coupled system

(see Appendix). Furthermore, the differential and common-

mode normalized waves of the coupled pair system can be

reconstructed from the normalized waves at a point on the

uncoupled line pairs (see Appendix). This point of recon-

struction is arbitrary, and one may choose the point to be

the interface between the coupled system and the uncoupled

reference lines.

Ang=o”
Mag=l V II

*

Ang=@ 12
Mag=l V

pl+ p2+

DUT

pl” p2-

Fig. 4. Conceptual diagram of mixed-mode two-port measurement system.

Substituting Z. = Z. = ZO w RO, the normalized nodal

waves of the coupled lines at the interface are

~[v, + izRo]
ai = 2fi

b, = &[w - i,Ro] (24)

where a; and bt are the normalized forward and reverse

propagating nodal waves at node i, respectively, and z 6 {1,

2, 3, 4}. These equations are applicable only in the case of

low-loss lines, with equal even and odd mode characteristic

impedance. By combining (12), (19), (20) and (24), it can be

shown that the differential and common-mode waves a

1 are

1( ‘(al + a2)l.=0adm’=7 a’- a’)’”=”acre’= w
~(b~ + b’)lz=o.

balm’ = *(b’ - “)”=” bcm’ = V

Similarly, for port 2

1( +a,+Cz. )lz=,adm’=m a3- “)”=’ ‘Cm’= /2

‘(h +bz&=t.bdrn, = ;(b.3 - b~)lz=, bcrn, = ~

port

(25)

(26)

Equations (25) and (26) represent important relationships

from which mixed-mode s-parameters can be determined with

a practical measurement system. To understand the utility of

the above relationships, consider Fig. 4, which is a conceptual

model for a mixed-mode measurement system. By adjusting

the phase difference, @, between the two sources to 0° or

180° one can determine the common-mode or differential-

mode forward s-parameters, respectively. Conceptually, the
measured quantities are the voltages and currents. These values

can be related to the normalized nodal waves, al, bl, az, b’,

etc., through the generalized definitions given in (24). From

these nodal waves, the differential and common-mode normal-

ized waves, and, hence, the mixed-mode s-parameters, can

be calculated. Physically, the various ratios of nodal waves,

al, bl, a2, bz, etc., are measured, and from theses ratios the

mixed-mode s-parameters are found.

The physical implementation of a mixed-mode s-parameter

measurement system can be achieved with a modification

of a standard VNA. The differential stimulus of a coupled

two-port requires the input waves at the reference plane
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Ang=o”
Length=l inch

Iviag=l V ~1
h=25 mil
er=9.6

*;+”i’thy ‘3 ~

+% ’2:
fv4%

*. Width= 100pm _
.

Ang=@ 12 Port 1 Port 2
i4

Mag=l V

Fig. 5. Schematic of mixed-mode s-parameter simulation of symmetric
coupled-pair transmission line.

to be 180° apart. One possible way this can be achieved

through a single signal source is with the use of a 180°-3-dB-

hybrid splitter/combiner. The construction of the differential

reflected and transmitted waves can be also completed through

a 180° splitter/combiner. The common-mode stimulus of a

coupled two-port requires the input waves at the reference

plane to be 0° apart. This can also be achieved through

a single signal source with the use of a 0°-3-dB-hybrid

splitter/combiner, with the construction of the common-mode

reflected and transmitted waves also completed through a 0°

splitter/combiner.

The calibration of such a system can be achieved through

the extension of VNA calibration theory. Detailed calibration

discussion is beyond the scope of this paper, but will be the

subject of future work. It is interesting to note, however,

that any successful calibration algorithm must correct both

magnitude and phase imbalances in the splitter/combiners and

signal paths, since any such imbalances will represent errors in

the generation and reconstruction of the mixed-mode waves.

Also, any calibration will be greatly assisted by requiring one

standard for both Z. and Zo, which is accomplished when

Z. = 20, as assumed in this section.

All mixed-mode normalized waves and s-parameters have

been discussed with respect to a transmission pair line as a

reference. Conceptually, this reference line must be attached

to every port of a DUT. However, there is no restriction on

the length of these reference lines. Therefore, the reference

lines can be of zero length, and the definitions of all mixed-

mode quantities will still apply, with one provision. Namely,

the generator source impedance and the load impedances must

match the characteristic impedance of the reference lines. The

use of zero length reference lines is a useful interpretation of

the general normalized wave definition of (24) from which the

mixed-mode s-parameters are defined.

It it interesting to note that an alternative requirement can

be found through which the nodal and mixed-mode waves

can be related. One could require the differential-mode and

common-mode characteristic impedances to be equal (i.e.

Zdm = Zc~ = 2.). The relationships (25) and (26) will

change, however. This alternate requirement may have value in

some cases, but the original requirement (Z. = Zo = ZO) lbest
relates mixed-mode s-parameters to standard s-parameters.

V. IDEAL MIXED-MODE MEASUREMENT

SYSTEM AND SIMULATIONS

Equations (25) and (26) form the basis of an ideal mixed-

mode s-parameter measurement system. These equations can

be implemented into a microwave simulator, and can provide

a quick and simple method of illustrating the usefulness of

mixed-mode s-parameters.

The circuit in Fig. 4 was implemented into Hewlett-

Packard’s MDS. The phase difference, ~, between the

two sources was set to 0° for the common-mode and

common-to-differential-mode forward s-parameters. For the

forward differential-mode and differential-to-common-mode

s-parameters, the phase difference was set to 180°. In each

case, the nodal waves were calculated from (25), (26), and

(24), and the s-parameters were calculated with the appropriate

ratios. The reverse s-parameters were calculated by driving

port 2 of the DUT with 50 Q loads at port 1.

The first example of mixed-mode s-parameters uses a DIUT

that is pair of coupled microstrip transmission lines, with

symmetric (i.e. equal width) top conductors. This symmetric

coupled-pair, and the accompanying circuitry, is shown in

Fig. 5. Each runner width is 100 pm with an edge-to-edge

spacing of 100 ~m. The substrate is 25-roil-thick alumina with

a relative permittivity of 9.6 with a loss tangent of 0.001, and

the metal conductivity is that of copper, N5.8 x 107 Mm.

A one inch section of this line was simulated in MDS as

described above, and the mixed-mode s-parameters at 5 GHz

are shown in (27) at the bottom of this page.

As expected, each partitioned sub-matrix demonstrates the

properties of a reciprocal, passive and (port) symmetric DI.JT.

The differential s-parameters, sdd, show the coupled ]Mir

possesses an odd-mode characteristic impedanceof50O(100-

O-differential impedance), and has low-loss propagation in the

differential mode. The common-mode s-parameters, See, show

the coupled pair posses an even-mode characteristic impedance

other than 50 0 Actually, the even-mode impedance of the

pair is 140 fl (70-fl common-mode impedance). Note the

cross-mode s-parameters are zero for the symmetric coupled

pair indicating no conversion between propagation modes.

The second example is similar to the first, except the coupled

microstrip transmission lines are asymmetric (i.e. unequal

widths). This asymmetric coupled-pair, and the accompanying

[

Sdd

Scd

r0.0011–141° 0.972 L9.53° I o 0 1

Sdc

‘110.972 .Z9.53° 0.001/–141° o 0

s=
I

1(27)

cc o 0 0.341 .1-60.4° 0.915 ~–26.4°

o 0 0.915&26.4° 0.3411–60.4°



1536 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO, 7, JULY 1995

i%lg=o”
Mag=l V

o 5
+

Length=l inch

‘ZOV2 Width=170p V4 ~
u(&-x&- -

12 14
Ang=@ Port 1 Port 2
Mag=l V

Fig. 6. Schematic of mixed-mode simulation of asymmetric coupled-pair
transmission line,

nllllllllllle
! 1 1 1 1 1 1 1 1

0
0

~ 1.0 Freq (GHz) 21.0’’”

Fig. 7. Simulated magnitude in dB of Sdd21 and S,,21 versus frequency

for asymmetric coupled-pair line,

circuitry, is shown in Fig. 6. One top conductor width is

100 pm, and the second is 170 ~m, with an edge-to-edge

spacing of 65 ~m. Again, the substrate is 25-roil-thick alumina

with a relative permittivity of 9.6 with a loss tangent of 0.001,

and the metal conductivity is that of copper. A one inch section

of this line was simulated in MDS at 5 GHz, and the mixed-

mode s-parameters are shown in (28) at the bottom of the

page.

As in the first example, each partitioned sub-matrix demon-

strates the properties of a reciprocal, passive and (port) sym-

metric DUT. Also like the first example, the differential

s-parameters show the coupled pair possesses an odd-mode

characteristic impedance of nearly 50 Q (actually 49 0),

and has low-loss propagation in the differential mode. The

common-mode s-parameters show the coupled pair has a
greater degree of mismatch than the first example (the even-

mode impedance is 152 0 in this case).

The most important difference between the two examples

is seen in the cross-mode s-parameters. The data in (28)

‘ 1.0 Freq (GHz) 21.0”

Fig. 8. Simulated magnitnde in dB of Sddl ~ and Sccl 1 versus frequency
for asymmetric coupled-pair line.

shows significant conversion between propagation modes,

particularly in transmission parameters 5’&.zl and SC&?~.Note

these two sub-matrices are equal indicating equal conversion

from differential to common-mode and from common to

differential-mode. These non-zero s-parameters can be inter-

preted conceptually in the following way. In the case of SCdz~,

a pure differential mode wave is impinging on port 1 of the

DUT. However, at port 2, both differential and common-mode

waves exist. Some of the energy of the differential wave is

converted to a common-mode propagation, and the total energy

is preserved (except for losses in the metal and dielectric).

This example circuit was simulated across frequency, and

the magnitudes of selected mixed-mode s-parameters are plot-

ted in Figs. 7–10. Fig. 7 shows both Sd&?l and SCC21in dB

from 1–2 1 GHz. The ripple pattern across frequency in the

common-mode transmission (SCC21) indicates an impedance

mismatch at the ports for common-mode propagation. At

the higher frequencies of the plot, the finite conductivity

of the conductors is evident as average loss increases. The

differential-mode transmission (Sddzl ) shows smaller ripples

(0.2-dB maximum), indicating smaller mismatch, and also

shows lower average loss. However, the losses due to the

reflections at the ports do not account for all of the ripple in the

differential transmission. As can be seen in Fig. 8, the return

loss for the differential mode is greater than 20 dB, which can

account for approximately 0.04 dB of worst case loss (over

ohmic losses). Mode conversion accounts for the remaining

reduction in the differential-mode, and hence Sddal is reduced.

Here, differential energy is converted to both common-mode

transmission SC&?l and common-mode reflection SCdll. Fig. 9

shows the cross-mode transmission SCdzl in dB, and Fig. 10

shows the cross-mode reflection SCdll in dB. The minima in

[

Sdd

s..

Sdc

-Is=cc

0.0031–175° 0.956 Ll.819°

0.956 ~1.819° 0.0031–175°

0.0051–177° 0.031 L80.7°

0.031180.7° 0.005/–177°

0.005/–177° 0.031180.7°

0.031180.7° o.oo5L–177°

0.502/148.0°

I

(28)
0.8441–40.2° “

0.844 L–40.2° 0.502 L–48.0°
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—
‘f’1.0 Freq (GHz) 21.0

Fig. 9. Simulated magnitnde in dB ofScd21 versus frequency for asymmet-
ric coupled-pair line.

—
‘f’1.0 Freq (GHz) 21.0

Fig. 10. Simulated magnitude in d13 of scd~ ~ versus frequency for asym-
metric coupled-pair line.

the differential-mode transmission sddzl correspond to a wOrSt

case point in the relative phases of Sd&?l, SCdzl, and Scdl 1. In

a low loss transmission line case, the insertion loss due to mode

conversion and miss-match can be shown to be approximately

LOSS (dB) ~ ‘lOlog[l – (l&d~~12 + l&&?~12 + lSCd~~12)].

(29)

This is consistent with the increasing ripple in sddzl with

increasing frequency since the mode conversion (S.dz 1 and

Scdll) increases with frequency.

VI. CONCLUSION

A theory for mixed-mode s-parameters is developed for

characterization of microwave differential circuits. The theory

is based on microwave coupled line systems, and is useful

to describe general differential circuits, including coupled

transmission lines. The theory is applied to develop the concept

of an ideal mixed-mode s-parameter measurement system,

and the restriction of equal even and odd-mode characteristic

impedances is shown to result in useful relationships for

such a system. A real mixed-mode measurement system can

be implemented from the results of this theoretical work.
However. a m-o~er mathematical basis is needed in the future

for characterization and calibration of these measurernemts.

Finally, microwave simulations illustrate some of the utility

of mixed-mode s-parameters.

APPENDIX

TRANSMISSION OF MODES FROM

COUPLED TO UNCOUPLED LINES

Consider a system where a pair of coupled transmission

lines are connected in cascade with a pair of uncoupled

transmission lines, as shown in Fig. A-1. The coupled pair

will be considered to be a reference line as defined in Section

III; hence, the coupled pair line is symmetric and low loss.

The normalized waves at the outputs of the uncoupled IIines

will be investigated under the same assumptions, namely low

loss and symmetry, which for the uncoupled case means the

lines are identical. The voltages at a point x on the coupled

pair lines are given by (12), rewritten hear to explicitly show

the complex exponential

‘U1(Z) = VepOse–~’z + venege~c’ + VOpO’e–7.” + VOw3e7{,z

~2 (%) = VePOSe–7=Z + venege%~ _ voPOse–70~ – vOwe7(>~

(A-1)

and the currents, also given by (12) are

(A-2)

With the uncoupled transmission lines, the voltages and cur-

rents at a point z are

with z = 1,2 and ZU1 = ZU2 = ZU, ~ul = 7.2 = ~.. At

the interface between the coupled pair and the uncoupled pair,

(z= O,z’ = d) the voltages and currents of the two syslams

must conform to the boundary conditions

VUl(o) = VI(o) Zul(o) = ii(o)

VuZ(o) = V2(0) ZU2(0) = 22(0). (A-4)

Through the application of these boundary conditions and (A-

1)–(A-3), the phasor coefficients on the uncoupled lines are

found to be

“~=:k~(1+2)+v~g(1-2)
‘v~(’+%)’vfl’(’-%)l

“’g=:P’Os(l-2)+~g(1+2)
‘v~Os(l-a+vflg(l+2)l “’-’)>,,
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Uncoupled - Coupled

Lines Lines

Fig. A-1. Schematic of uncoupled pair in cascade with coupled pair-line.

“’s=%’os(’+%)+vflg(’-a
-v++2)-vflg(l-2)1

“’g=i[v’0s(l-3+~g(1+3
-v~os(’-a-~neg(’+w‘A-’)

The differential-mode voltage at the output of the uncoupled

pair (z = –d) can be defined by (6) as

?&nu(-d) = Vu, (-d) - Vu,(-d)

which can be found to be

where

(A-7)

(A-8)

(A-9)

The normalized forward differential-mode wave at the out-

put of the coupled pair, defined generally by (16), can be

shown as

ad””=z (A-1O)

where Rd~U is the (approximately) purely real characteristic

impedance of the differential-mode, defined between the un-

coupled lines, and Rd~U = 2RU where RU is the characteristic
impedance of the each of the uncoupled lines. From (A-5),

(A-6), (A-9) and (A-1 O), it is found that

adm=;/#-[adm(l+~)

‘bdm(l-%51e’””d(A-II)

where ad~ and bdm is the differential-mode normalized for-

ward and reverse waves of the coupled system at x = O,

and Rdm is the approximately real characteristic impedance

of the differential-mode on the coupled-pair. Similarly, the

remaining differential and common-mode normalized waves

can be shown to be

bdm=;&$jjbdm(l+~)

‘adm(’+)le”’””d
acmu=~/$jacm(l+~)

‘bcm(’-%)le’””d
bc.u=;~~~cm(l+%)

‘acm(+e)le-’pud(A-12)

where bchn,a.m, and bcm are the normalized waves of the

coupled system at x = O. Therefore, the differential and

common-mode normalized waves at the output of the uncou-

pled lines are equal to the corresponding coupled system waves

with a phase-shift and a scaling factor due to the different

characteristic impedances. To the resulting mixed-mode s-

parameters, the phase-shift and the scaling factor represent

an arbitrary reference plane shift and a re-normalization to

the characteristic impedance of the uncoupled transmission

lines, respectively. Because of this, the coupled pair reference

line can be replaced with an uncoupled pair reference, and

the resulting mixed-mode s-parameters are simply transposed

to a different reference impedance by the uncoupled lines.

Therefore, the mixed-mode s-parameters of an arbitrary n-port

DUT can be measured with npairs of uncoupled transmission

lines.
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