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Combined Differential and Common-Mode
Scattering Parameters: Theory and Simulation

David E. Bockelman, Member, IEEE, and William R. Eisenstadt, Senior Member, IEEE

Abstract—A theory for combined differential and common-
mode normalized power waves is developed in terms of even and
odd mode impedances and propagation constants for a microwave
coupled line system. These are related to even and odd-mode
terminal currents and voltages. Generalized s-parameters of a
two-port are developed for waves propagating in several cou-
pled modes. The two-port s-parameters form a 4-by-4 matrix
containing differential-mode, common-mode, and cross-mode s-
parameters. A special case of the theory allows the use of
uncoupled transmission lines to measure the coupled-mode waves.
Simulations verify the concept of these mixed-mode s-parameters,
and demonstrate conversion from mode to mode for asymmetric
microwave structures.

1. INTRODUCTION

HERE is an emerging need to measure RF and microwave

differential circuits. Differential circuits have been impor-
tant in communications systems for more than 50 years. Recent
technological advances have pushed analog differential circuit
performance limits into RF and low microwave frequencies.

Typically, differential circuits are designed and analyzed
with traditional analog techniques, which employ lumped
element assumptions. Examples of such analog differential
circuit design and analysis are found in the texts by Gray
and Meyer [1] and Middlebrook [2]. RF and microwave
differential circuits contain distributed circuit elements, and
require distributed circuit analysis and testing. Furthermore,
traditional methods of testing differential circuits have required
the application and measurement of voltages and currents,
which is difficult at RF and microwave frequencies. Scattering
parameters (s-parameters) have been developed for charac-
terization and analysis at these frequencies [3], but have
been applied primarily to single-ended circuits. A modifica-
tion of existing s-parameter techniques is needed to measure
differential-mode and common-mode circuit performance at
microwave frequencies.

Currently, it is possible to measure common-mode s-
parameters on wafer with standard ground-signal-ground
probes to more than 100 GHz [4]. However, a differential
circuit requires a balanced probe to launch differential signals.
A balanced probe provided by Cascade Microtech [5] allows
some characterization of differential signals with addition of
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180 degree splitter/combiners. However, these probes attenu-
ate the common-mode signal, so that it is neglected, although
typically non-zero. Testing with separate differential probes
and common-mode probes will allow for more complete s-
parameter characterization of differential circuits, but until this
work, there has been little examination of this subject.

A severe limitation in differential-mode/common-mode cir-
cuit characterization is a lack of applicable power wave and
s-parameter theory. There is no reported way (known to the
authors) to describe s-parameters based on mixed differential-
mode/common-mode propagation. Previous work most closely
related to this work has been specific to descriptions of coupled
transmission lines [6]-[14] and shielded balanced transmission
lines. Work by the National Bureau of Standards on balanced
transmission lines uses s-parameters to describe differential-
mode propagation, but neglects common-mode propagation
and any mode conversions [15]. In the literature, the cou-
pled transmission work has been most commonly applied
to directional couplers [16]-[19] with Cohn and Levy [20]
providing a historical perspective on the role of coupled
transmission lines in directional coupler development. Past
work on coupled transmission lines has largely focused on
voltage/current relationships and Z, Y, and ABCD-parameter
descriptions of TEM circuits. One notable exception to the
Z/Y/ABCD-parameter approach is work by Krage and Haddad
[21] which employs traditional normalized power waves to
describe coupler behavior. However, all of the referenced work
deals with specific TEM structures, and is not suitable for
characterization of a generic differential circuit. The present
paper provides the theory behind the mixed propagation mode
based s-parameters suitable for general microwave differen-
tial circuit characterization, and demonstrates its utility with
simulations on Hewlett-Packard’s Microwave Design System
(MDS) [22].

This paper is organized as follows: In Section II the Mixed-
mode two-port circuit is presented, and the definition of
the coupled line transmission system is given. Mixed-mode
power waves and mixed-mode s-parameters are developed
in Section III. Section IV discusses special considerations
necessary for mixed-mode measurement systems. Section V
presents the ideal mixed-mode two-port measurement system
and simulations using MDS. Finally, conclusions are presented
in the last Section VI

1I. MiXED-MODE TwO-PORT CIRCUIT

The concept of a microwave differential circuit is examined
in this section. In a practical RF/microwave implementation,

0018-9480/95$04.00 © 1995 IEEE
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Fig. 1. Schematic of differential s-parameter measurement.

such a differential circuit is based on pairs of coupled transmis-
sion lines. A schematic of a typical two-port RF/microwave
differential system is shown in Fig. 1. Essential features of
the microwave differential circuit in Fig. 1 are the coupled pair
transmission line input and output. It is conceptually beneficial
to define a signal that propagates between the lines of the
coupled-pair (as opposed to propagating between one line
and ground). Such signals are known as differential signals,
and can be described by a difference of voltage (AV; #
0,AV, # 0) and current flow between the individual lines
in a pair. By such a definition, the signal is not referenced
to a ground potential, but rather the signal on one line of the
coupled pair is referenced to the other. Further, this differential
signal should propagate in a TEM, or quasi-TEM, fashion
with a well-defined characteristic impedance and propagation
constant. Coupled line pairs, as in Fig. 1, allow propagating
differential signals (the quantities of interest) to exist. The
differential circuit discussion in this paper will be limited to
the two-port case, but the generalized theory for n-port circuits
can be readily derived from this work.

Most practical implementations of Fig. 1 will incorporate a
ground plane, or some other global reference conductor, either
intentionally or unintentionally. This ground plane allows
another mode of propagation to exist, namely common-mode
propagation. Conceptually, the common-mode wave applies
equal signals with respect to ground at each of the individual
lines in a coupled pair, such that the differential voltage
is zero (ie. AV; = AV, = 0). The ability of the mi-
crowave differential circuit to propagate both common-mode
and differential-mode signals requires any complete theoretical
treatment to include characterization of all simultaneously
propagating modes. For convenience, the simultaneous prop-
agation of two or more modes (namely, differential-mode,
and common-mode) on a coupled transmission line will be
referred to in this paper as mixed-mode propagation, from
which mixed-mode s-parameters will be defined.

III. MIXED-MODE POWER WAVES AND S-PARAMETERS

To begin the presentation of mixed-mode s-parameters,
a general asymmetric coupled transmission line pair over a
- ground plane will be analyzed. This analysis yields multiple
propagating modes all referenced to ground. These modes
will be used to express the desired differential signal between
the lines of the coupled-pair, as well as the common signal
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Fig. 2. Schematic of asymmetric coupled-pair transmission lines.

referenced to ground. Fig. 2 is a diagram of such a coupled-
pair transmission line, with all pertinent voltages and currents
denoted. Also shown in Fig. 2 is a representation of a ter-
mination for the coupled-pair line. Later, this paper will use
these lines as reference lines at the input and output of an
arbitrary DUT. Subject to the simplifying assumptions, the
mathematical results of this paper are applicable to any pair
of conductors with a nearby ground conductor.

Referring again to Fig. 2, the behavior of the coupled-line
pair can be described by [6]

d?)l . .
—— = 2111 + Zml2
dx
d’Ug . .
—— =291 + Znt1
dx
diy 1+ U
dz =Y1V1 T YmV2
diy
= m 1
iz Y2V2 + YmU1 n

where z; and zy are self-impedances per unit length, y; and
12 are admittances per unit length, and z,, and y,,, are mutual
impedance and admittance per unit length, respectively. Also,
a harmonic time dependance (i.e. e/*?) is assumed.

The solution to the set of (1) as published by Tripathi [6]
1S given as

v =A1e” " + Ase¥e® + Age™ "7 + Age’®
vy = A1 Ree™ 7" + AyRee¥® + AsRpe "% + AyR, ™"

AL Az Az _ Ay
7 = ——e Y —_ ___e’ch _|_ —e V¥ __ _e'yﬂ‘m
! ch ZcQ Zﬂ'l Z7r2
ip = ARe o A2Re 4, + AsBr o _ Mﬁﬂwm
ch ZCZ Z7r1 Z7r2
@

where A;, and Az represent the phasor coefficients for the
forward (positive ) propagating ¢ and m-modes, respectively,
and A,, and A4 represent the phasor coefficients for the
reverse (negative ) propagating ¢ and w-modes, respectively.
The characteristic impedance of the c-modes are represented
by Z.; and Z.; for lines A and B, respectively, and the
characteristic impedance of the w-modes are represented by
Zn1 and Z,o for lines A and B, respectively. Additionally,
R, = vy /vy for v = 27, Ry = va/v1 for v = £v,, and

21+ Y22 1
’Yc2,7r = :_l/_iéy_zg + Ymzm £ 5[(91»21 — y222)?
+ 4(21Ym + Y22m ) (Z2Ym + Y12m)] M2 €)



1532

Each voltage/current pair at each node represent a single
propagating signal referenced to the ground potential. These
signals will be called nodal waves.

A practical simplification in the development of mixed-
mode s-parameter theory is to assume symmetric coupled pairs
(i.e., lines A and B have equal width) as reference trans-
mission lines. This assumption allows simple mathematical
formulations of mixed-mode s-parameters. Furthermore, this
assumption is not overly limiting, since reference lines may
be made arbitrarily short. For symmetrical lines, in (2) R, =
1 and R, = —1, and the ¢ and the w-modes become the
even and odd modes, respectively, as first used by Cohn [13].
For notational purposes, we shall use the substitutions ¢ — e
and = — o for even-mode and odd-mode, respectively. With
these substitutions, the mode characteristic impedances and
propagation constants become

ch :Zc2 - Ze
Z7r1 = Z7r2 = Zo
Ve =%Ye Tx = Yo @

Expressing (2) in the symmetric case

vy =A1e7 7T £ Age”e® + Age™” + Aye”
1 1 2 3 4

g = Are” 7°% ++ Age™T — AzeT 7% — Aze?e”

. Al — e A2 Yot A3 o A4 Yo
=7 Z.° +Zoe Z.°

A L Ay L, Az _ Ay . .

12 = 7‘1 Yeér 7?6% - Z—je Yol + —Zj eV, (5)

As before, these voltage/current pairs are nodal waves at each
terminal that are referenced to ground.

It is important, now, to define the differential and common-
mode voltages and currents to develop a self-consistent set
of mixed-mode s-parameters. Define the differential-mode
voltage at a point, z, to be the difference of between voltages
on node 1 and node 2

Vam () = vy — va. 6)

This standard definition establishes a signal that is no longer
referenced to ground. In a differential circuit, one would expect
equal current magnitudes to enter the positive input terminal as
leaves the negative input terminal. Therefore, the differential-
mode current is defined as one-half the difference between
currents entering nodes 1 and 2

idm(.Z’) = %(21 — i2). (7)_

Definitions in (6) and (7) are self-consistent with the differ-
ential power delivered to a differential load. These definitions
differ from previously published definitions by Zysman and
Johnson [10] due to change in references. The common-mode
voltage in a differential circuit is typically the average voltage
at a port. Hence, common-mode voltage is one half the sum
of the voltages on nodes 1 and 2

Ve (Z) = §(v1 + v2). (8)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 7, JULY 1995

The common-mode current at a port is simply the total current
flowing into the port. Therefore, define the common-mode
current as the sum of the currents entering nodes 1 and 2

bem(Z) = i1 + do. )

Note: The return current for the common-mode signal flows
through the ground plane. Again, these definitions differ from
definitions from Zysman and Johnson [10] due to change in
references.

Expressing these differential and common-mode values (6)
through (9) in terms of the line voltages and currents (5)

Vam(x) =2(Aze™ 7" + A e")

)
Vem(2) = A1€77% 4+ Ase™"
)

. Ay _ Ay .,
bem(T =2(Z—ie T Z—je'ye )

Recall that A; and A; are the forward and reverse phasor
coefficient for the even-mode propagation, and A3 and A, are
the forward and reverse phasor coefficient for the odd-mode
propagation. If a short hand notation is introduced, a better
understanding of these definitions can be had. Let

VP (z) = Aze™ 7T )8 (z) = Age¥e”

w2 (z) = A1e7 7" uI%8(z) = Agee”

(10)

. Az _ . Ay
pos = = Yol neg = = YT
i (x)—Zoe io 8(x) = 7 °
A A
PO (z) = eV 1B(g) = ZZever, (11)
[ e
Then (5) becomes
v1 =vE%(x) + v (z) + vg (@) + vy (x)
vy =08 (a) + 02%(x) = 05 (a) ~ v (2)
i1 =97 (x) — %8 (2) + 457 (x) — %% ()
ig =18%%(x) — i2°%(x) — iP%%(x) + i7°8(x) (12)
and (10) becomes
Vam(z) =2(v3*(z) + v;* ()
pos __ ,yneg
T;dm(ﬂf) :igos(m) _ igeg(l.) — Yo (w)Z Yo (ZE)
Vem(z) =vE*(2) + v ()
pos __ ayneg
’l'cm(il') :Q(Z’SOS(I) _ igeg(x)) — Qve (33') Ve (15) (13)

Ze

Note that, in general, 7, # Z..

Characteristic impedances of each mode can be defined
as the ratio of the voltage to current of the appropriate
modes at any point, z, along the line. These impedances can
be expressed in terms of the even and odd-mode (ground
referenced) characteristic impedances

v (z) 2028 ()

ZmE dm — o — i

=) T @z 1
vE% () VP () Z,

Zcm = .cgls = gs = —. 1
@) " @@z 2
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These relations between the even/odd mode characteristic
impedances and the differential/common mode characteristic
impedances are consistent with the matched load terminations
discussed in the literature [7], [8]. ‘

Now that voltages, currents, and characteristic impedances
have been defined for both differential and common modes, the
normalized power waves can be developed. By the definition
for a generalized power wave at the nth port [23], [24]

1
Gy = [Un + ZnZ'n]
2+/Re(Z,)
b = [0 — in 2] (16)

~ 24/Re(Z,,)

where a,, is the normalized wave propagating in the forward
(positive x) direction, b,, is the normalized wave propagating
in the reverse (negative z) direction, and 7Z,, is the charac-
teristic impedance of the port. With the above definitions, the
differential normalized waves become, at port 1

= -1 Vdm(T) + tdm(x
Adm; :a'dm(O) — 2\/’m[ dm( )+ dm( )de]|z=0

_ - 1 2 *
bam, =bin(0) = 5 meslvin() b4 Ll
a7

Similarly, define the common-mode normalized waves, at port
1, as

= = ; Vem () + temlT =
Gemy :acm(()) = 2\/m[ cm( )+ cm( )Zcm]lm-O

_ _ 1 . *
mel :bcm(o) - 2\/m[vcm(m) ZCm(m)Zcm”w:O‘
(18)

Analogous definitions at port 2 can easily be found by setting
z = [l

Imposing the condition of low-loss transmission lines on
the coupled-pair of Fig. 2, the characteristic impedances are
approximately purely real [24]. Under this restriction, Zg,, =
Re{Zim} = Ram and Zey, =~ Re{Zcm} = Rep. With this
assumption, the normalized wave equations at port 1 can be
simplified

cam, = 5=lam () + (@) Ranl o
bam, = 5 \/ll{d_r;[vdm(x)—z'dm(a:)Rdew:O (19)
G = 5=lben() + () el oo
bom, = W—;—E[Um(w) —iom(@)Ren]lomo.  (20)

With the normalized power waves defined, the development
of mixed-mode s-parameters is straight forward. The definition
of generalized s-parameters [23], [24] is

@1
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Fig. 3. Conceptual diagram of mixed-mode two-port.

where the bold letters denote an n-dimensional column vector
or an n-by-n matrix. Given a coupled-line two-port like Fig. 2,
or any arbitrary mixed-mode two-port, the generalized mixed-
mode s-parameters can be given as

bam, = $11@dm, + $120dm, + 513%cm; + $14Gcm,
bdm, = $210dm; + $220dm; + $23%cm; + $240cm,
bcml = 831Qdm; + 5320 dm, + 8330 cm;, + $340cm,

bcmg = 5410dm; t $420dm, + 5430cm; + 5440cm, (22)

where the subscripts 1 and 2 denote ports 1 and 2, respectively.
Here, [S] can be described by

bdm1 a’dm1
bam, | _ |Saa_| e | dam, (23)
bcm1 Sca Scc Gem,
me2 ach

The following names are used: Call [S4q4] the differential s-
parameters, [S..| the common-mode s-parameters, and [ 4]
and [S.4) the mode-conversion or cross-mode s-parameters.
In particular, [Sdc] describes the conversion of common-mode
waves into differential-mode waves, and [S.q4] describes the
conversion of differential-mode waves into common-mode
waves. These four partitions are analogues to four transfer
gains (Acc, Add, Acd; Ade) introduced by Middlebrook [2].

These mixed-mode two-port s-parameters can be shown
graphically (see Fig. 3) as a traditional four-port. It must be
remembered, however, that the ports are conceptual tools only,
and not physically separate ports.

IV. CONSIDERATIONS FOR A PRACTICAL
MIXED-MODE MEASUREMENT SYSTEM

The most straightforward means of implementing a mixed-
mode s-parameter measurement system is to directly ap-
ply differential and common-mode waves while measuring
the resulting differential and common-mode waves. Unfor-
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tunately, the generation and measurement of these modes
of propagation is not easily achievable with standard vector
network analyzers (VNA). However, under certain condi-
tions, one can relate the total nodal waves (each representing
two modes of propagation) to the desired differential and
common-mode waves. These nodal waves are readily gen-
erated and measured with standard VNAs, and with con-
sideration, the differential and common-mode waves, and
hence the mixed-mode s-parameters, can be calculated. There-
fore, the relationships between the normalized mixed-mode
waves (@dm1,bdmis Gemls bemi, €tc.) and the nodal waves
{(a1,b1,0a9,bs, etc.) will be derived, and the necessary con-
ditions for these relationships to exist will be found.

If one is to make a general purpose RF measurement port,
the values of characteristic port impedances must be chosen.
It is useful to require the even and odd-mode characteristic
impedances of the measurement system to be equal, thus
reducing the number of different valued matched terminations
required. In contrast, it is difficult to fabricate lumped termi-
nation standards for coupled lines where Z, does not equal
Z,. If the characteristic impedances of the lines are defined
to be equal (say, 50 1), then a further simplification of the
above expressions can be accomplished with the substitution
Ze = Zo = Zy where in the low-loss case Zyg =~ Re{Zp} =
Ry.

By choosing equal even and odd-mode characteristic imped-
ances, one is selecting a special case of coupled transmission
line behavior, as described in (1). Enforcing equal even
and odd-mode characteristic impedances is equivalent to the
conditions of uncoupled transmission lines. As has been shown
in the literature [7], the condition Z, = Z, results in the
mutual impedances and admittances being zero (z,, = 0,
Ym = 0). Under these conditions, the describing differential
equations of the transmission line system (1) clearly become
uncoupled, resulting in two independent transmission line
solutions. Although very specific, this is a valid solution to (1),
and all results up to this point are also valid under the special
case of equal even and odd-mode characteristic impedances.
Therefore, we choose the reference lines of the mixed-mode
s-parameters to be uncoupled transmission lines. The key to
this choice is that these uncoupled reference lines can be
easily interfaced with a coupled line system, as discussed
below.

To interpret the meaning of uncoupled reference trans-
mission lines, consider a system of transmission lines: one
coupled pair, and one uncoupled pair connected in series
with the coupled pair. If even and odd (or ¢ and #) modes
are both propagating (forward and reverse) on the coupled
pair. then it can be shown that the waves propagating on
each of the uncoupled transmission lines are linear com-
binations of the waves propagating on the coupled system
(see Appendix). Furthermore, the differential and common-
mode normalized waves of the coupled pair system can be
reconstructed from the normalized waves at a point on the
uncoupled line pairs (see Appendix). This point of recon-
struction is arbitrary, and one may choose the point to be
the interface between the coupled system and the uncoupled
reference lines.
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Fig. 4. Conceptual diagram of mixed-mode two-port measurement system.

Substituting Z, = Z, = Zy =~ Ry, the normalized nodal
waves of the coupled lines at the interface are

+ ZAzRO]

a; =

1
NI
1
bz = Uy — .zR
VR

where a; and b, are the normalized forward and reverse
propagating nodal waves at node ¢, respectively, and ¢ € {1,
2, 3, 4}. These equations are applicable only in the case of
low-loss lines, with equal even and odd mode characteristic
impedance. By combining (12), (19), (20) and (24), it can be
shown that the differential and common-mode waves a port
1 are

24

m ! ( )| = m ! ( )| =
xT C £
Gdm; \/5 a1 a2 0 Gcmy \/— ai a2 0

b = 7500 = bl b, = 7 (by + bo)lomo. (25)
Similarly, for port 2

Qdrm, = %(03 —04)|o=t  Ocm, = %(as + a4)]z=

bams = = (bs — b)lomt bemy = —= (b5 + bi)lat. (26)

V2 V2

Equations (25) and (26) represent important relationships
from which mixed-mode s-parameters can be determined with
a practical measurement system. To understand the utility of
the above relationships, consider Fig. 4, which is a conceptual
model for a mixed-mode measurement system. By adjusting
the phase difference, ©, between the two sources to 0° or
180° one can determine the common-mode or differential-
mode forward s-parameters, respectively. Conceptually, the
measured quantities are the voltages and currents. These values
can be related to the normalized nodal waves, a1, b1, as, by,
etc., through the generalized definitions given in (24). From
these nodal waves, the differential and common-mode normal-
ized waves, and, hence, the mixed-mode s-parameters, can
be calculated. Physically, the various ratios of nodal waves,
a1,b1, a9, by, etc., are measured, and from theses ratios the
mixed-mode s-parameters are found.

The physical implementation of a mixed-mode s-parameter
measurement system can be achieved with a modification
of a standard VNA. The differential stimulus of a coupled
two-port requires the input waves at the reference plane
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Fig. 5. Schematic of mixed-mode s-parameter simulation of symmetric
coupled-pair transmission line.

to be 180° apart. One possible way this can be achieved
through a single signal source is with the use of a 180°-3-dB-
hybrid splitter/combiner. The construction of the differential
reflected and transmitted waves can be also corpleted through
a 180° splitter/combiner. The common-mode stimulus of a
coupled two-port requires the input waves at the reference
plane to be 0° apart. This can also be achieved through
a single signal source with the use of a 0°-3-dB-hybrid
splitter/combiner, with the construction of the common-mode
reflected and transmitted waves also completed through a 0°
splitter/combiner.

The calibration of such a system can be achieved through
the extension of VNA calibration theory. Detailed calibration
discussion is beyond the scope of this paper, but will be the
subject of future work. It is interesting to note, however,
that any successful calibration algorithm must correct both
magnitude and phase imbalances in the splitter/combiners and
signal paths, since any such imbalances will represent errors in
the generation and reconstruction of the mixed-mode waves.
Also, any calibration will be greatly assisted by requiring one
standard for both Z. and Z,, which is accomplished when
Z. = 4,, as assumed in this section.

All mixed-mode normalized waves and s-parameters have
been discussed with respect to a transmission pair line as a
reference. Conceptually, this reference line must be attached
to every port of a DUT. However, there is no restriction on
the length of these reference lines. Therefore, the reference
lines can be of zero length, and the definitions of all mixed-
mode quantities will still apply, with one provision. Namely,
the generator source impedance and the load impedances must
match the characteristic impedance of the reference lines. The
use of zero length reference lines is a useful interpretation of
the general normalized wave definition of (24) from which the
mixed-mode s-parameters are defined.

It it interesting to note that an alternative requirement can
be found through which the nodal and mixed-mode waves
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can be related. One could require the differential-mode and
common-mode characteristic impedances to be equal (i.e.
Zaw = Zem = Zp). The relationships (25) and (26) will
change, however. This alternate requirement may have value in
some cases, but the original requirement (Z, = Z, = Zy) best
relates mixed-mode s-parameters to standard s-parameters.

V. IDEAL MIXED-MODE MEASUREMENT
SYSTEM AND SIMULATIONS

Equations (25) and (26) form the basis of an ideal mixed-
mode s-parameter measurement system. These equations can
be implemented into a microwave simulator, and can provide
a quick and simple method of illustrating the usefulness of
mixed-mode s-parameters.

The circuit in Fig. 4 was implemented into Hewlett-
Packard’s MDS. The phase difference, ©, between the
two sources was set to 0° for the common-mode and
common-to-differential-mode forward s-parameters. For the
forward differential-mode and differential-to-common-mode
s-parameters, the phase difference was set to 180°. In each
case, the nodal waves were calculated from (25), (26), and
(24), and the s-parameters were calculated with the appropriate
ratios. The reverse s-parameters were calculated by driving
port 2 of the DUT with 50 Q loads at port 1.

The first example of mixed-mode s-parameters uses a DUT
that is pair of coupled microstrip transmission lines, with
symmetric (i.e. equal width) top conductors. This symmetric
coupled-pair, and the accompanying circuitry, is shown in
Fig. 5. Each runner width is 100 pm with an edge-to-edge
spacing of 100 zm. The substrate is 25-mil-thick alumina with
a relative permittivity of 9.6 with a loss tangent of 0.001, and
the metal conductivity is that of copper, ~5.8 x 107 S/m.
A one inch section of this line was simulated in MDS as
described above, and the mixed-mode s-parameters at 5 GHz
are shown in (27) at the bottom of this page.

As expected, each partitioned sub-matrix demonstrates the
properties of a reciprocal, passive and (port) symmetric DUT.
The differential s-parameters, Sgq, show the coupled pair
possesses an odd-mode characteristic impedance of 50 2 (100-
Q-differential impedance), and has low-loss propagation in the
differential mode. The common-mode s-parameters, S.., show
the coupled pair posses an even-mode characteristic impedance
other than 50 €). Actually, the even-mode impedance of the
pair is 140 Q (70-Q common-mode impedance). Note the
cross-mode s-parameters are zero for the symmetric coupled
pair indicating no conversion between propagation modes.

The second example is similar to the first, except the coupled
microstrip transmission lines are asymmetric (i.e. unequal
widths). This asymmetric coupled-pair, and the accompanying

0.001/—141° 0.972/9.53° 0 0
Sad | Sdc 0.972/9.53° 0.001/-141° 0 0 o7
Sca l Sece - 0 0 0.341/-60.4° 0.915/-26.4°
0 0 0.915/-26.4° 0.341/-60.4°
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Fig. 6. Schematic of mixed-mode simulation of asymmetric coupled-pair
transmission line.

I
<
Z,
Z,
A
Iy

wél\ TAA;é
A

ATIWINANAVAANAN
O!VIVI\V\V\VVIV

1.0 Freq (GHz) 2107

Fig. 7. Simulated magnitude in dB of Sg401 and Sce21 versus frequency
for asymmetric coupled-pair line.

circuitry, is shown in Fig. 6. One top conductor width is
100 pm, and the second is 170 pm, with an edge-to-edge
spacing of 65 pm. Again, the substrate is 25-mil-thick alumina
with a relative permittivity of 9.6 with a loss tangent of 0.001,
and the metal conductivity is that of copper. A one inch section
of this line was simulated in MDS at 5 GHz, and the mixed-
mode s-parameters are shown in (28) at the bottom of the
page.

As in the first example, each partitioned sub-matrix demon-
strates the properties of a reciprocal, passive and (port) sym-
metric DUT. Also like the first example, the differential
s-parameters show the coupled pair possesses an odd-mode
characteristic impedance of nearly 50 ©Q (actually 49 Q),
and has low-loss propagation in the differential mode. The
common-mode s-parameters show the coupled pair has a
greater degree of mismatch than the first example (the even-
mode impedance is 152 € in this case).

The most important difference between the two examples
is seen in the cross-mode s-parameters. The data in (28)
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Fig. 8. Simulated magnitude in dB of Sgq11 and Scci1 versus frequency
for asymmetric coupled-pair line.

shows significant conversion between propagation modes,
particularly in transmission parameters Sg.o1 and S.421. Note
these two sub-matrices are equal indicating equal conversion
from differential to common-mode and from common to
differential-mode. These non-zero s-parameters can be inter-
preted conceptually in the following way. In the case of S 421,
a pure differential mode wave is impinging on port 1 of the
DUT. However, at port 2, both differential and common-mode
waves exist. Some of the energy of the differential wave is
converted to a common-mode propagation, and the total energy
is preserved (except for losses in the metal and dielectric).
This example circuit was simulated across frequency, and
the magnitudes of selected mixed-mode s-parameters are plot-
ted in Figs. 7-10. Fig. 7 shows both Sg42; and S..o; in dB
from 1-21 GHz. The ripple pattern across frequency in the
common-mode transmission (S..21) indicates an impedance
mismatch at the ports for common-mode propagation. At
the higher frequencies of the plot, the finite conductivity
of the conductors is evident as average loss increases. The
differential-mode transmission (Sgq21) shows smaller ripples
(0.2-dB maximum), indicating smaller mismatch, and also
shows lower average loss. However, the losses due to the
reflections at the ports do not account for all of the ripple in the
differential transmission. As can be seen in Fig. 8, the return
loss for the differential mode is greater than 20 dB, which can
account for approximately 0.04 dB of worst case loss (over
ohmic losses). Mode conversion accounts for the remaining
reduction in the differential-mode, and hence Saa01 is reduced.
Here, differential energy is converted to both common-mode
transmission S.q21 and common-mode reflection Sz411. Fig. 9
shows the cross-mode transmission S.42; in dB, and Fig. 10
shows the cross-mode reflection S.411 in dB. The minima in

0.003£-175° 0.956/1.819° 0.005£—-177°  0.031/80.7°

Sad , Sac 0.956/1.819° 0.0032£-—175° 0.031/80.7°  0.005/—177°
= . (28)

Sca ‘ See 0.0052—-177° 0.031/80.7° 0.502/48.0° 0.844/-40.2°

0.031/80.7° 0.005£-—177° 0.844/-40.2° 0.502/—48.0°
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Fig. 9. Simulated magnitude in dB of S 421 versus frequency for asymmet-
ric coupled-pair line.
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Fig. 10. Simulated magnitude in dB of S 413 versus frequency for asym-
metric coupled-pair line.

the differential-mode transmission Sgg92; correspond to a worst
case point in the relative phases of Sg491, Scge1, and Seg11. In
alow loss transmission line case, the insertion loss due to mode
conversion and miss-match can be shown to be approximately

Loss (dB) ~ —10log[1 — (|S4a11|® + [Seaz1|? + |Sea11|?)]-
(29)

This is consistent with the increasing ripple in Sggo; with
increasing frequency since the mode conversion (Scq2: and
Scq11) increases with frequency.

VI. CONCLUSION

A theory for mixed-mode s-parameters is developed for
characterization of microwave differential circuits. The theory
is based on microwave coupled line systems, and is useful
to describe general differential circuits, including coupled
transmission lines. The theory is applied to develop the concept
of an ideal mixed-mode s-parameter measurement system,
and the restriction of equal even and odd-mode characteristic
impedances is shown to result in useful relationships for
such a system. A real mixed-mode measurement system can
be implemented from the results of this theoretical work.
However, a proper mathematical basis is needed in the future
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for characterization and calibration of these measurements.
Finally, microwave simulations illustrate some of the utility
of mixed-mode s-parameters.

APPENDIX
TRANSMISSION OF MODES FROM
CoOUPLED TO UNCOUPLED LINES

Consider a system where a pair of coupled transmission
lines are connected in cascade with a pair of uncoupled
transmission lines, as shown in Fig. A-1. The coupled pair
will be considered to be a reference line as defined in Section
III; hence, the coupled pair line is symmetric and low loss.
The normalized waves at the outputs of the uncoupled lines
will be investigated under the same assumptions, namely low
loss and symmetry, which for the uncoupled case means the
lines are identical. The voltages at a point =z on the coupled
pair lines are given by (12), rewritten hear to explicitly show
the complex exponentials

U1 (.’E) — V;Pose_"/em + ‘/enege’)’ew + Vopose—’)’ow + ‘/'onege’Yow

1)2(37) — ‘/epose—'ygz + V'enege'ye.r - Vopose—'yow _ V;nege’)’om

(A-1)
and the currents, also given by (12) are
 pos Vneg V/ pos V/ neg )
11(x) = —%e e et — ———CZE er® + —%o e ToF — ——9Z—O——e ol
V/pos V/ neg 1/ pos Ynes
io(x) = ———%e e~ — —%e eve® — ——%0 e 7" 4 %o e””.
(A-2)

With the uncoupled transmission lines, the voltages and cur-
rents at a point x are

) _ pos —Yu neg Yu
i) = Vo e ™™ + V, Fe™

pos neg
Gyi(z) = —L—e M V—m——e%“’ (A-3)
ur Zu Zu

with i = 1,2 and Z,1 = Zys = Zy,Yul = Yu2 = VYu. At
the interface between the coupled pair and the uncoupled pair,
(z = 0,2’ = d) the voltages and currents of the two systems
must conform to the boundary conditions

v,1(0) =v1(0)  44,1(0) = 41(0)
Uu2(0) = ’UQ(O) iuz((]) = iQ(O).
Through the application of these boundary conditions and (A-

1)—(A-3), the phasor coefficients on the uncoupled lines are
found to be

(A-4)

@ -e(ieg) ()
+ VOP°S(1 + g—:) + Ve <1 - Z—:)}

v tfe(-2) (34 2)
+ VPpos (1 - %) + Ve (1 + -g—:)} (A-5)
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Fig. A-1. Schematic of uncoupled pair in cascade with coupled pair-line.
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The differential-mode voltage at the output of the uncoupled
pair (x = —d) can be defined by (6) as

Vdm, (—d) = vu1(—d) — vy2(—d) (A-T)
which can be found to be
Vdm, (—d) = Ve €74 + Vo8 g=1d (A-8)
where
VER = VETSVE Vi = VES-VESL (A9

The normalized forward differential-mode wave at the out-
put of the coupled pair, defined generally by (16), can be
shown as

Vpos

dm,,

Gdm, = —,R—dm—u

where Rgy,, is the (approximately) purely real characteristic
impedance of the differential-mode, defined between the un-
coupled lines, and Rgn, = 2R, where R,, is the characteristic
impedance of the each of the uncoupled lines. From (A-5),
(A-6), (A-9) and (A-10), it is found that

1 | Ram Ram
== ) =dm a1 u
2V Ram, {ad ( + Rdm>

Ram
)

dm

(A-10)

Adm,,

+ bam (1 — (A-11)
where aqm, and bgy, is the differential-mode normalized for-
ward and reverse waves of the coupled system at z = 0,
and Ry, is the approximately real characteristic impedance
of the differential-mode on the coupled-pair. Similarly, the
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remaining differential and common-mode normalized waves
can be shown to be

+ bem (1 - %)] e?Pud
bem, :% chi [bcm <1 + %)

+ Gem (1 - Rﬂ)] e~ IPud (A-12)

Rcm
where by, Gem, and bey, are the normalized waves of the
coupled system at & = 0. Therefore, the differential and
common-mode normalized waves at the output of the uncou-
pled lines are equal to the corresponding coupled system waves
with a phase-shift and a scaling factor due to the different
characteristic impedances. To the resulting mixed-mode s-
parameters, the phase-shift and the scaling factor represent
an arbitrary reference plane shift and a re-normalization to
the characteristic impedance of the uncoupled transmission
lines, respectively. Because of this, the coupled pair reference
line can be replaced with an uncoupled pair reference, and
the resulting mixed-mode s-parameters are simply transposed
to a different reference impedance by the uncoupled lines.
Therefore, the mixed-mode s-parameters of an arbitrary n-port
DUT can be measured with npairs of uncoupled transmission
lines.
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